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This paper presents the experimental demonstration of the corpuscular-wave dualism theory. The correlation
between the de Broglie wavelength related to the thermal motion and the potential barrier width and height
is reported. The stochastic jumps of light atoms (hydrogen, deuterium) between two equilibrium sites A and
B (identical geometry) occur via different pathways; one pathway is over the barrier (classical dynamics),
and the other one is through the barrier (tunneling). On the over-the-barrier pathway, there are no obstacles
for the de Broglie waves, and this pathway exists from high to low temperatures up to 0 K because the
thermal energy is subjected to the Maxwell distribution and a certain number of particles owns enough energy
for the hopping over the barrier. On the tunneling pathway, the particles pass through the barrier, or they are
reflected from the barrier. Only particles with the energy lower than barrier heights are able to perform a
tunneling hopping. The de Broglie waves related to these energies are longer than the barrier width. The
Schrödinger equation is applied to calculate the rate constant of tunneling dynamics. The Maxwell distribution
of the thermal energy has been taken into account to calculate the tunneling rate constant. The equations for
the total spectral density of complex motion derived earlier by us together with the expression for the tunneling
rate constant, derived in the present paper, are used in analysis of the temperature dependence of deuteron
spin-lattice relaxation of the ammonium ion in the deuterated analogue of ammonium hexachloroplumbate
((ND4)2PbCl6). It has been established that the equationCpTtun ) EH (thermal energy equals activation energy),
whereCp is the molar heat capacity (temperature-dependent, known from literature), determines directly the
low temperatureTtun at which the de Broglie wavelength,λdeBroglie, related to the thermal energy,CpT, is equal
to the potential barrier width,L. AboveTtun, theλdeBrogliewavelength related to theCpT energy is shorter than
the potential barrier width and not able to overcome the barrier. The activation energyEH equals 7.5 kJ/mol,
and therefore, theTtun temperature for deuterons in ((ND4)2PbCl6 is 55.7 K. The agreement between the
potential barrier width following from the simple geometrical calculations (L ) 0.722 Å) and de Broglie
wavelength atTtun (L ) 0.752 Å) is good. The temperature plots of the deuteron correlation times for (ND4)2-
PbCl6 reveal comparable values of the correlation times of the tunneling, (τ(T)), and over-the-barrier jumps
(τ(H)) near 34.8 K. Matsuo, on the basis of the molar heat capacity study, found the first-order phase transition
at this temperature.

Introduction

Corpuscular-wave dualism is revealed when the length of the
electromagnetic or de Broglie wave comes up to a size
comparable to that of the object. Experimental evidence of this
phenomenon comes from the diffraction of light, X-rays,
electrons, or neutrons as well as the photoelectricity. Well-
recognized de Broglie waves are those accompanying the motion
of electrons in the electric field (Davisson and Germer experi-
ment). The phenomena of diffraction and interference occur at
the de Broglie wavelength comparable with the distances
between the atomic planes in the crystal.

The tunneling dynamics seems to be also a proof of the
corpuscular-wave dualism. As follows from the Schro¨dinger
equation, the possibility of tunneling dynamics appears when

the energy of the particle is lower than the potential barrier
height. The kinetic energy of the particle in molecular systems
is the thermal energy. The thermal energy causes the stochastic
(thermally activated) reorientations of molecules and molecular
groups and de Broglie waves related to these motions. As
follows from the Schro¨dinger equation, the de Broglie waves
related to the particles in the space of the potential barrier pass
through the barrier, or they are reflected from the barrier.
However, on the classical pathway (over the barrier), there are
no obstacles for the de Broglie waves.

Study of stochastic molecular motions in solids is an
important application of the nuclear magnetic relaxation method.
Usually, interpretation of the experimentally determined tem-
perature dependence of spin-lattice relaxation time permits
identification of molecular motions and determination of the
relevant motion parameters, including activation energies and
rate constants (correlation times). Recently, theoretical equations
for the spectral density of a methyl group motion have been
published.1,2 In this theory,C3 hindered rotation of a methyl
group is considered as a complex motion consisting of jumps
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over a potential barrier (Arrhenius pathway, classical motion)
and tunneling jumps through the potential barrier (tunneling
pathway, quantum mechanical type of motion). Tunneling jumps
through the barrier and jumps over the barrier cause transport
of a mass between the same equilibrium sites, but they are based
on different probabilities of occurrence (rate constants).

The purpose of the paper is to present the application of the
tunneling rate constant (probability of tunneling, coefficient of
the transparency of the potential barrier) according to the
Schrödinger equation to analyze the spin-lattice relaxation in
a wide temperature regime. The Maxwell distribution of thermal
energy will be taken into account in our calculations of the
tunneling rate constant. Recently, the tunneling rate constant
according to Schro¨dinger has been proposed in a number of
our papers,1-5 but the problem of the Maxwell distribution of
thermal energy has not been considered. We show, on a
previously analyzed example6 of BAC-h6 data,7 how taking into
account the Maxwell distribution changes the theoretical tem-
perature dependences of theT1.

Our approach to the tunneling and classical dynamics differs
from that known from literature. We treat the tunneling and
classical hopping as a complex stochastic motion, while these
are treated in the literature as a uniform motion, described by
a single rate constant. Usually the Mu¨ller-Warmuth approach8,9

is applied to study the molecular dynamics of methyl-bearing
solids, and the Skinner and Trommsdorff approach10 is for
hydrogen-bonded tautomers. The single rate constant, proposed
in both approaches, is not convincing, which was discussed in
our papers.1-6,11

The Schro¨dinger equation applied by us solves several
problems. (1) The same expressions for the tunneling rate
constant can be used for tunneling hopping of the proton/
deuteron in proton transfer and in methyl group hindered
rotation. (2) We are able to explain why the tunneling is
detectable only at low temperatures up to a certain temperature.
(3) It can be shown that the tunneling dynamics of particular
atoms begins when the de Broglie wavelength related to the
kinetic energy of these atoms (thermal motion) is comparable
with the potential barrier width. (4) The over-the-barrier motion
can exist up to 0 K because there is no obstacle for the de
Broglie waves.

The slower slope on the low-temperature side of the minimum
of the ln(T1) versus (1000/T) dependence has been observed in
a deuterated analogue of ammonium hexachloroplumbate,
(ND4)2PbCl6.12 Filipek et al.12 indicated the tunneling dynamics
as an effective mechanism of relaxation below 50 K but did
not analyze this mechanism. In the present paper, the data12

are analyzed in terms of the Schro¨dinger equation and in the
light of the corpuscular-wave dualism.

Reorientation Model

According to the classical mechanics, to overcome a potential
barrier, the particles must have a kinetic energy (thermal energy)
greater than the height of the barrier (Figure 1). The thermal
energy higher than the potential barrier height allows hopping

over the barrier. The probability of thermally activated hopping
over the potential barrier (rate constant,k(H)) is proportional to
the barrier height (Arrhenius law); therefore

wherek0
(H) is the preexponential factor,EH ) VH - Ev0 is the

molar activation energy,VH and Ev0 are the potential barrier
height and the energy of the ground-state vibrational level for
the Avogadro number of particles.

The hopping over the barrier takes place over the entire
thermodynamic temperature regime,T, because the thermal
energy is subjected to the Maxwell distribution, and a certain
number of particles ownEH energy and are able to perform a
hopping over the barrier. Zero Kelvin is the final temperature
for the probability of classical motion. Moreover, on the
Arrhenius pathway, there are no obstacles for the de Broglie
waves.

According to quantum mechanics, there is a possibility of
passing through a potential barrier by the particles whose kinetic
energy is lower than the barrier height. The solution of the
Schrödinger equation for the problem of the tunneling motion
of particles through the potential barrier explicitly gives the rate
constant of tunneling jumps (probability of tunneling, coefficient
of transparency of the barrier),1-5 that is

where m is mass of the particle,k0
(T) is the preexponential

factor,U0 andL are the height and width of the potential barrier
(Figure 1), andE is the energy of the particle.

Equation 2 indicates that the probability of tunneling is greater
than zero only when the kinetic energy of the particle,E, is
lower than the height of the potential barrier,U0. Therefore,
the tunneling jumps begin at a temperature at which the kinetic
energy of the particle becomes equal to that of the potential
barrier height, (E ) U0). The probability of tunneling increases
whenE f 0. The particles are also reflected from the barrier
(coefficient of the reflection from the barrier, probability of the
reflection). Thus, on the tunneling pathway, the potential barrier
is an obstacle for the de Broglie waves related to thermal
energies of the particles. However, the energy higher than the
potential barrier height allows hopping over the barrier (Arrhe-
nius law).

The energy

characterizes the energy of the Avogadro number of particles
at the ground-state vibrational level. TheCpT, whereCp is the
molar heat capacity andT is temperature in the Kelvin scale, is
the thermal energy of the Avogadro number of particles.

The potential barrier height of the Avogadro number of
particles equals

Thus, eq 2 can be rewritten as

where

Figure 1. Scheme of the tunneling pathway from the A to B site
through a potential barrier;L andU0 are the barrier width and height,
Ev0 andEv1 are energy levels of the vibrational states v0 and v1, and
EH is the activation energy.

k(H) ) k0
(H)exp(- EH/RT) (1)

k(T) ) k0
(T)e-(2L/p)x2m(U0-E) (2)

NAvE ) Cp T + Ev0 (3)

NAvU0 ) EH + Ev0 (4)

k(T) ) k0
(T)e-BxEH-CpT (5)

B ) 2L
p x2m

NAv
(6)
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The value ofB in eq 6 depends on the mass,m, of the tunneling
particle and on the width of the potential barrier, L. The
tunneling jumps are expected for the light atoms, H and D,
hopping in hydrogen bonds and methyl groups. The mass of
the tunneling deuteron ism ) 3.346 10-27 kg.

As follows from the structural data of the deuterated analogue
of ammonium hexachloroplumbate, (ND4)2PbCl6, three deuter-
ons of the ND4 group are at the tetrahedron apexes, while the
fourth one is along the N-D bond which is the symmetry axis
of this molecular group. In such a structure, deuterons undergo
hindered rotation,C3, analogous to that of hydrogen atoms in a
methyl group. The fourth deuteron is invisible for this rotation.
The distances between deuterons areRDD ) 1.78 Å. Taking
into regard the atomic size (the radius of the first Bohr orbita0

) 0.529 Å), it is possible to calculate the potential barrier width
L, which seems to be simplyL ) RDD - 2a0 ) 0.722 Å (Figure
2), and then, the value ofB is 0.144 (xJ)-1.

Equation 5 determines the temperatureTtun at which the
probability of tunneling becomes nonzero and stays nonzero
for temperatures lower thanTtun, where

Despite the thermal energyCpT reaching the value ofEH at
increasing temperature, the thermal energies of some fraction
of the molecules are lower thanEH. Therefore, more detailed
consideration of the tunneling rate constant requires taking into
account the Maxwell’s distribution of thermal energies (the
expression for the tunneling rate constant which includes the
Maxwell distribution of thermal energy is calculated in the
Appendix of the present paper)

wheref0,EH andE0,EH are the fraction and the energy of particles
with energies from 0 toEH (only they are capable of tunneling)

and

Equation 8 has improved the values of the tunneling rate
constant expressed by eq 5 in the temperature regime where
1 < (EH/CpT) < 1.5. As also follows from eq 8, due to
Maxwell’s distribution, the tunneling rate constant exists in the
whole temperature regime but because of the low values of
f0,EH, the tunneling hopping can be negligible aboveTtun.

The Schro¨dinger description of the probability of the tunneling
jumps is very useful to study the tunneling dynamics of protons
and deuterons in the methyl group,1-3 as well as in the hydrogen
bond.4-6

The stochastic molecular motions in the ground and first
excited vibrational states v0 and v1 do not have the same rates.
Therefore, the rate constantsk(H) and k(T) for the separate v0
and v1 states have to be defined separately. Assuming that eqs
1 and 5 (or 8) define the (k(H))v0 and (k(T))v0, the respective rate
constant for v1 can be defined as

wherek′ . 1. The value ofk′ . 1 indicates a greater rate of
tunneling in the first excited vibrational state than in the ground
state. A valuek′ of about 30 has been established for the rate
(τ(T))v1 of the proton transfer in the hydrogen bond.13-15

Spin-Lattice Relaxation of Deuterons in a Methyl Group

The spin-lattice relaxation of a nuclear spin with a quadru-
pole moment is caused by a stochastic modulation of the electric
field gradient at the site of the nucleus caused by molecular
motion. The largest tensor components of the deuterons are
normally aligned to the X-D distance vector (chemical bond
of deuterium). Since the populations of molecules at the
vibrational levels obey the Boltzmann distribution (the vibra-
tional relaxation is much faster thanT1 relaxation), the deuteron
relaxation rate is given by

wherenv0 andnv1 are the Boltzmann fractions of molecules in
the separate vibrational levels v0 and v1 associated with the
average energiesEv0 and Ev1 of the ground and first excited
vibrational levels.

The fractionnv0 of the molecules undergoes motion at the
tunneling rate constants of (k(H))v0 and (k(T))v0, while the fraction
nv1 undergoes motion at the tunneling rate constants of (k(H))v1

and (k(T))v1. Because the population of molecules in the second
excited vibrational level is very low, it seems reasonable to take
into account only two vibrational levels (nv0 + nv1 ) 1 and
nv1/nv0 ) exp(-E01/RT)). Therefore, the values ofnv0 andnv1

are

Figure 2. Three deuterons at the distances ofRDD ) 1.78 Å are
separated by the barriers of the widthsL ) RDD - 2a0 ) 0.722 Å;a0

) 0.529 Å is the radius of the first orbit of Bohr.

Ttun )
EH

Cp
(7)

k(T) ) f0,EH
k0

(T)e-BxEH-E0,EH (8)

f0,EH
) erf(x 3EH

2CpT) - 2

xπx 3EH

2CpT
exp(-

3EH

2CpT) (9)

E0,EH
) CpT[erf(x 3EH

2CpT) - 2

xπ x 3EH

2CpT( EH

CpT
+ 1)

exp(-
3EH

2CpT)] (10)

(k(H))v1 ) k0
(H) exp[-(EH - E01)/RT] (11)

(k(T))v1 ) k′(k(T))v0 (12)

1
(T1)

) nv0( 1
T1

)
v0

+ nv1( 1
T1

)
v1

(13)

nv0 )
exp(E01/RT)

exp(E01/RT) + 1
(14)
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The tunnel splittingpωT
vx of each vxth vibrational level is

imposed by the symmetry of the methyl group. The spin energy
levels in a magnetic field for a purely threefold potential barrier
of a CD3 rotator and for the two lowest vibrational states were
calculated by Haupt.16 In the limit of vibrational energiesEvx

< U0, where vx ) v0, v1, ..., the vibrational states are
degenerated into the states of symmetry A, Ea, and Eb. The A
sublevels are split into quartets, while the E levels are split into
doublets. The splittingpωT

vx of the vibrational states of the
methyl group superimposes the Zeeman splitting of spin levels
ωi in a magnetic field. TheC3 hindered rotation (jumps over
the barrier as well as tunneling jumps through the barrier) of
methyl deuterons in a triple potential induces the transitions
between the spin states. The deuteron spin-lattice relaxation
of an isolated CD3 group is determined only by AT E
transitions. The symmetry conserving transitions Ea T Eb (ωi

and2ωi) are forbidden by the spin selection rules. Therefore,
Haupt16 has proposed to replace the angular NMR frequencies
ωi and 2ωi in the well-known BPP formula17 with ωi ( ωT

vx

and 2ωi ( ωT
vx, respectively. The numerical factor in the Haupt

equation has to be assumed to be twice as small as that in BPP
because whenωT

vx ) 0, both theoretical expressions should
give identical results. Therefore

where

wherem ) 1, 2 are the spectral densities of the correlation
functions of the fluctuating part of the interaction Hamiltonian.
These random functions are

The qcc ) <e2qzzQ/h> is the quadrupole coupling constant
expressed in hertz. The polar and azimuth anglesυ and æ
describe the orientation of the electric field gradient,qzz, at the
site of the quadrupolar nuclei.

The spectral densities depend on the model of motion. The
respective spectral densities, obtained as a result of the Fourier
transform of the correlation functions for the model of complex
motion ofqzz in a triple potential, consisting of jumps over the
barrier and incoherent tunneling, have been derived in refs 1
and 18. Inserting the corresponding spectral densitiesJm(ω) (eq
56 in ref 1) into eq 16, one gets

where

and

Here,Θ3 ) 109.4° for the symmetry axis of the electric field
gradient (tetrahedral angle of D-C-D in the methyl group).

The correlation time for jumps over the potential barrier
(Arrhenius equation) equals

where (k(H))v0 and (k(H))v1 are given by eqs 1 and 11.
The correlation time for tunneling jumps through the potential

barrier equals

where (k(T))v0 and (k(T))v1 are given by eqs 8 and 12.

Application of Theory to Experimental Data

The deuteronT1 was measured at 46 MHz as a function of
inverse temperature for a powdered sample of (ND4)2PbCl6.12

Two tunneling frequencies,ωT
v0, 2π × 0.35 and 2π × 1 MHz

below the order-disorder phase transition temperature, have
been found from the deuteron NMR spectra of (ND4)2PbCl6
and attributed to ions in the ordered domains.12 Such small
values of tunnel splitting (ωT

v0 < ωi) have an insignificant
effect on theT1 (46 MHz) values.1,2 Therefore, both eq 16 with
ωT

v0 ≈ 0 or the well-known BPP equation17 can be used in the
analysis of the deuteronT1 data for (ND4)2PbCl6.

Experimental values are presented in Figure 3 together with
the theoretical fit of eqs 13 and 20 with eq 1 and 8 to the data.
The fitting parametersqcc, τ0

(H), τ0
(T), andEH are listed in Table

1. The value of the quadrupole coupling constantqcc is well
estimated from the fitting procedure ofT1 because this parameter
determines the value ofT1 at the minimum of the temperature
dependence. The temperature dependence of the molar heat
capacity,Cp, which is necessary for this fit, has been taken from
ref 19.

The activation energyEH obtained from the slope of the high-
temperature side of theT1 minimum equals 7.5 kJ/mol. This
value ofEH and the temperature dependence of thermal energy
CpT indicate the temperatureTtun as that at which the value of
the thermal energy equals the activation energy (CpTtun ) EH).
The Ttun temperature is 55.7 K (1000/Ttun ) 17.95 K-1).

The experimental and theoretical temperature dependencies
of the correlation times are presented in Figure 4. The correlation
time (τ(T))v0 (eq 24) is almost a constant value from the low
temperatures up to theTtun temperature. Then, with increasing
temperatures, a significant increase in the tunneling correlation
time values takes place. The characteristicTtun temperature
appears in the temperature regime where (τ(T))v0 > (τ(H))v0.
Therefore, despite the tunneling hopping existence over the
entire temperature regime, the low probability of this motion
at high temperatures (very long tunneling correlation time,
(τ(T))v0) makes it undetectable. Similarly, the correlation time
(τ(H))v0 characterizing jumps over the barrier (eq 23) follows

nv1 ) 1
exp(E01/RT) + 1

(15)

( 1
T1

)
vx

) 9π2

16
[J1(ωi + ωT

vx) + J1(ωi - ωT
vx) + J2(2ωi +

ωT
vx) + J2(2ωi - ωT

vx)] (16)

Jm(ω) ) ∫-∞

∞
〈Fm(t)Fm* ( t + τ)〉 exp(-iωτ)dτ (17)

F1(t) ) qccsinϑ(t) cosϑ(t) exp[iæ(t)] (18)

F2(t) ) qccsin2
ϑ(t) exp[i2æ(t)] (19)

( 1
T1

)
vx

) 3π2

20
qcc

2sin2Θ3{cos2Θ3(f[(ωi + ωT
vx),(τ(T))vx] +

f[(ωi - ωT
vx),(τ(T))vx] + f[(ωi + ωT

vx),(τ(H))vx] +

f[(ωi - ωT
vx),(τ(H))vx]) + sin2Θ3(f[(ωi + ωT

vx),(τi)vx] +

f[(ωi - ωT
vx),(τi)vx])} (20)

1
(τi)vx

) 1

(τ(T))vx

+ 1

(τ(H))vx

(21)

f(ωi ( ωT, τ) ) τ
1 + (ωi ( ωT)2τ2

+ 4τ
1 + (2ωi ( ωT)2τ2

(22)

(τ(H))vx ) 1

3(k(H))vx

(23)

(τ(T))vx ) 1

3(k(T))vx

(24)
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the Arrhenius dependence in the entire temperature regime, but
in low temperatures. this time is so long (much longer than-
(τ(T))v0) that this motion does not contribute to theT1 relaxation.

The less accurate fit of the data in the temperature regime
near 1000/T ∼ 30 K-1 can indicate one more mechanism of
relaxation. This mechanism could be due to tunnel splitting. In
this mechanism, the time-dependent fluctuations of the interac-
tion Hamiltonian do not concern the mass transport between
equilibrium sites but the lifetime broadening of spin levels.8

In Figures 3 and 4, one sees theT1 and (τ(T))v0 peaks on the
theoretical dependences corresponding to the molar heat capacity
Cp peak at 34.8 K (temperature of the first-order transition19).
There is an interesting feature of the correlation times revealed
in the plots in Figure 4, namely, that the phase transition takes
place near the temperature at which the experimental correlation
timesτ3

(H) andτ3
(T) have comparable values.

de Broglie Wave Related to the Thermal Motion of
Particles

It has been well-established that the corpuscular-wave dualism
is revealed when the lengths of the electromagnetic or de Broglie
waves are comparable to or longer than the size of the object
onto which the wave is incident.

The de Broglie wavelength is described by the formula

whereh ) 6.63 × 10-34 J‚s is the Planck’s constant, andm
andEkin are the mass and kinetic energy of a particle.

In the ideal gas, the kinetic energy (thermal energy) of a
particle is described by the equation

wherekB )1.38× 10-23 J‚K-1 is the Boltzmann constant, and
T is temperature on the Kelvin scale.

The kinetic energy of a particle in any material equals

whereCp is the molar heat capacity, andNAv ) 6.02× 1023 is
the Avogadro number.

As follows from eqs 25-27, the de Broglie wavelength,
λdeBroglie, related to the thermal motion increases with decreasing
temperature. The line #1 in Figure 5 presents the temperature
dependence ofλdeBroglierelated to the thermal energy,CpT, of a
deuteron in the molecule studied, (ND4)2PbCl6. This dependence
was calculated on the basis of eqs 25 and 27 and the molar
heat capacity,Cp, which is temperature-dependent.19 The de
Broglie wavelength corresponding to the particular energyEH

) 7.5 kJ/mol in the Maxwell distribution of thermal energy
equals 0.752 Å (#2). The line #1 intersects the line #2 at the
temperatureTtun, where CpTtun ) EH, revealing that the de
Broglie wavelength related to the thermal energy,CpT, reaches
the value of 0.752 Å at theTtun temperature. This value is close
to the value of the barrier widthL ) 0.722 Å following from
the geometrical calculations (Figure 2). Thus, the temperature
Ttun is the point at which the de Broglie wavelength of the

Figure 3. Temperature dependence of the deuteron spin-lattice
relaxation time for (ND4)2PbCl6 at 46 MHz. The best fit of the
experimental data (circles) to eqs 13 and 20 with eqs 1 and 8 is given
by the solid line. The arrows show the characteristic temperaturesTtun

and the phase transition temperature (P. T).

Figure 4. Deuteron correlation timesτ(H) (circles) andτ(T) (triangles)
of (ND4)2PbCl6 as a function of 1000/T (K-1). The points and lines
refer to the experimental and theoretical correlation times, respectively.
The arrows show the characteristic temperaturesTtun and the phase
transition temperature (P. T).

TABLE 1: The Motional Parameters Obtained from the Fit
of the Deuteron T1 Data to Eqs 13 and 20 with Eqs 1 and 8

qcc

(kHz)
τ(H) ) 1/(3k0

(H))
(10-14s)

τ(T) ) 1/(3k0
(T))

(10-4 s)
EH

(kJ/mol)
Ttun

(K)

(ND4)2PbCl6 145 4 3 7.5 55.7

Figure 5. The temperature dependence of the de Broglie wavelength
related to the average thermal energyCpT/NAv (#1) and the particular
thermal energyEH ) (7.5/NAv) kJ (#2) of the deuteron in (ND4)2PbCl6
(#1). Curve #3 represent theλdeBroglierelated to the thermal energy (1.5
kBT) of the deuteron in the ideal gas. The arrow shows the characteristic
temperaturesTtun.

λdeBroglie) h

x2mEkin

(25)

Ekin ) 3
2
kBT (26)

Ekin )
CpT

NAv
(27)
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thermal motion becomes comparable to the potential barrier
width. BelowTtun, theλdeBroglierelated to theCpT energy is longer
than the potential barrier width,L, and can pass through the
barrier. The longer the wavelength, the higher the probability
of tunneling and lower the probability of reflection from the
barrier. AboveTtun, the λdeBroglie related to theCpT energy is
reflected from the potential barrier.

The line # 3 inFigure 5 was calculated on the basis of eqs
25 and 26. As follow from this figure, the de Broglie
wavelength, related to the thermal energy, in the ideal gas (#3)
is longer than that in the real substance (#1) at the same
temperature.

Other Models of the Tunneling Rate Constant and Total
Spectral Density

Our calculations of eq 20 are based on the Woessner20 and
Wallach21 methods of calculation of the total spectral density
for complex motion. Woessner20 proved that it is not the total
correlation time but the total spectral density of a complex
motion consisting of a number of independent motions simul-
taneously modulating the dipolar Hamiltonian, which has to be
calculated. The classical and tunneling rate constants in our
approach are based on the Arrhenius (eq 1) and Schro¨dinger
(eq 8) equations. These are two different probabilities of jumps;
therefore, the temperature dependencies of spectral densities of
both types of motion are different.

In contrast to our calculations, the total rate constant,kTOTAL,
representing the tunneling and over-the-barrier hopping, is
usually approximated by a biexponential dependence whose first
term is the Arrhenius-like dependence, and the second describes
the deviations from the Arrhenius law. Such an approximation
of the spectral density is based on the assumption that at
intermediate temperatures, the classical dynamics evolves
smoothly into the quantum low-temperature dynamics and that
the particle is transferred from the A to B equilibrium site by
a single, uniform motional process.

Müller-Warmuth8,9 introduced the following phenomenologi-
cal expression for the temperature dependence of total rate
constants

wherek0
(T) is the preexponential factor andE01 ) Ev1 - Ev0 is

the energy difference between the vibrational states v1 and v0.
In the high-temperature limit, the total rate constant,k(TOTAL),
invariably corresponds to the classical limit, and at low
temperatures, it is governed by the tunneling.

The approximation ofk(TOTAL) presented by Limbach et al.22

assumes also a two-exponential dependence of this value

where

and

whereE1 andE2 are the average activation energies for the high-
and low-temperature motional processes,KAB is the equilibrium
constant, andk01 andk02 are the preexponential factors.

The singlek(TOTAL) assumed as a weighted average of the
finite time constant, which is evaluated numerically and

calculated directly from the exponential protonT1 temperature
dependence, is proposed by Sto¨ckli et al.23 In this case, the
temperature dependence of the correlation time yields the
apparent activation energy

The activation energies thus obtained are well below the barrier
heights for all compounds studied. This phenomenon according
to the authors is the proof of the predominance of tunneling
hopping even at high temperatures.

With a view to formulating the smooth transition from
tunneling to classical motion, it is assumed by Skinner and
Trommsdorff,10 Heuer and Haeberlen,24 Meyer and Ernst,13 and
also Horsewill et al.14,15,25that

wherek(H) is given by eq 1. The description of the tunneling
rate constant, (k(T))v0, which requires the presence of unequal
energy at equilibrium sites A and B, has been given by Skinner
and Trommsdorff10

where ∆ is the energy difference between potential energy
minima at equilibrium sites; (k(T))v1 ) k′(k(T))v0, wherek′ . 1.
The value ofk′ . 1 indicates a faster rate of tunneling hopping
in the first excited vibrational state than in the ground state.

All of the above-presented phenomenological approximations
of the total rate constant used in the spin-lattice relaxation
expressions fit very well with the experimental data because
the k(TOTAL) is the best-fit parameter in these approaches. The
problems appear only when the same best-fit parameters have
to be used for theT1 temperature dependences at high and low
resonance frequencies. It is impossible to obtain an acceptable
fit to both the protonT1 (ωI ) 2π × 55. 2 MHz,ωI ) 2π ×
24.7 MHz) andT1F (B1 ) 9 G), obtained for 2,5 DNBA data,5

by employing eq 33, which is discussed in Figure 5 of ref 5.
In our opinion, the classical and tunneling hopping cannot

be treated as a uniform motion described by a single rate
constant. Neither the Skinner and Trommsdorff equation nor
the Schro¨dinger equation imply that the particle is transferred
from the A to B equilibrium site by a single motional process;
therefore, the spectral density for a single motion cannot be
correct in describing the wide temperatures dynamics of light
atoms as1H and2H. That the approach of the spectral density
due to classical and tunneling hopping by the total rate constant,
kTOTAL, seems to be incorrect has been shown in our papers1,6

(ref 6, Figure 6 and ref 1, Figure 9).

Summary

The stochastic jumps of light atoms (hydrogen, deuterium)
between sites A and B occur by jumps over the barrier
(Arrhenius) and by tunneling jumps (Schro¨dinger). These two
stochastic motions, although geometrically identical (transfer
of mass from A to B equilibrium sites), are described by two
different probabilities and occur via different pathways; one
pathway is over the barrier, and the other one is through the
barrier.

The two sites A and B can be imagined as two cities separated
by a mountain. The way across the mountain leads over the
top of the mountain. This way can always be used (0 K is the

k(TOTAL) ) k0
(H) exp(-EH/RT) + k0

(T) exp(-E01/RT) (28)

k(TOTAL) ) kAB
(TOTAL) + kBA

(TOTAL) (29)

kAB
TOTAL ) k01 exp(-E1/RT) + k02 exp(-E2/RT) (30)

kBA
TOTAL ) kAB

(TOTAL)/KAB (31)

Eact )
∂(ln(1/kTOTAL)

∂(1/RT)
(32)

k(TOTAL) ) k(H) + nv0(k
(T))v0 + nv1(k

(T))v1 (33)

k(T) ) k0
(T)exp(∆/RT) + 1

exp(∆/RT) - 1
(34)
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end of the classical motion), but enough power (thermal energy)
has to be available to take this pathway. A decrease in
temperature causes a decrease in thermal energy, but the thermal
energy is subjected to the Maxwell distribution, and a certain
number of particles own enough energy for hopping over the
barrier. Another way goes through the tunnel under the
mountains, but this way can be used when the gate to the tunnel
is opened. The “key which opens the gate to the tunnel pathway”
is the de Broglie wave, which is long enough to pass the barrier
width. The nature is very gracious for moving atoms, predicts
when they do not have enough power to go over the barrier,
and opens the gate to the tunnel pathway.

The de Broglie wavelength related to theCpT energy is equal
to the barrier width at the temperature,Ttun, where the thermal
energy of a particle equals the activation energy (CpTtun ) EH).
Below Ttun temperature, the de Broglie wavelength, related to
theCpT energy, is longer than the barrier width. This condition
is a solution of the Schro¨dinger’s equation and is called the
“transparency of barrier”. Due to Maxwell’s distribution of the
thermal energy, the kinetic energies of some particles are lower
than the barrier height even at high temperatures, but above
Ttun, the fraction of molecules with energies lower thanEH is
very small. On the tunnel pathway (in the space of the potential
barrier), the de Broglie waves related to the thermal motion of
particles are also reflected from the barrier (probability of the
reflection from the barrier). On the Arrhenius pathway, there
are no obstacles for the de Broglie waves. The tunneling motion
confirms the corpuscular-wave dualism theory.

Appendix

Equation 5, expressing the tunneling correlation time accord-
ing to the Schro¨dinger equation, has been proposed in a number
of our papers.1-5 Despite the fact that the thermal energyEthermal

) CpT reaches the value ofEH with increasing temperature,
some fraction of the molecules takes thermal energy lower than
EH. Therefore, more detailed consideration of the tunneling rate
constant requires one to take into account the Maxwell’s
distribution of the thermal energy. In this appendix, we derive
the expression for the tunneling rate constant which includes
the Maxwell distribution of thermal energy. We also show, on
the previously analyzed exampleT1 (59.63 MHz) BAC-h6 data,6

how the allowing of the Maxwell distribution changes the
theoretical values of the tunneling rate constant and influences
the T1 temperature fit.

The distribution of kinetic energies,E, of the Avogadro
number of atoms or molecules is governed by the Maxwell
distribution

where

for the particles in the ideal gas, whereR ) 8.314 J/K/mol is
the gas constant, or

for the particles in the real substance.
The area under the Maxwell distribution in the limits of zero

to infinity remains the same, giving a value of one

The fraction of molecules with a the particular energyEH equals

The activation energyEH ) 4.1 kJ/mol has been determined
for BAC-h6 protons.6,7 The temperature dependence offEH

calculated from eq A5 is interesting (Figure 6). The fraction of
particles with the energyEH equals zero at low temperatures.
This temperature dependence goes through a maximum at the
temperature 1000/Ttun ) 12.7 K-1. At this temperature,Ttun,
the thermal energyCpT equalsEH.

The fraction of atoms with energies from 0 toEH (only they
are capable of tunneling) at a given temperature represents the
part of the integral given in eq A4, that is

The f0,EH ) 1 at low temperatures and decreases to 0 at high
temperatures. This means that all particular energies in the
Maxwell distribution of the thermal energy are lower thanEH

at low temperatures, and therefore,f0,EH ) 1. At higher
temperatures, part of the molecules take kinetic energies higher
thanEH, and therefore, the fraction of energies in the range of
0 to EH decreases (Figure 6).

The molar average kinetic energy (thermal energy),Ethermal,
equals (3/2)RT for the ideal gas andCpT for the real substance.
The thermal energy of the Avogadro number of particles equals
the field under theEf(E) function, that is

whereâ is given by eq A2 or A3.
The thermal energy of the particles in the limit of 0 toEH

energy can be calculated from the equation

The increasing temperature of the sample BAC-h6 causes an
increase in the thermal energy values,CpT, as shown in Figure
7. TheCpT ) EH at the temperature 1000/Ttun ) 12.7 K-1. The
temperature dependence of the energyE0,EH is different than
thisCpT. E0,EH goes through a maximum at the temperatureTtun

(Figure 7)
As follows from the Schro¨dinger equation, only the fraction

of the molecules of the kinetic energy in the range of 0 toEH

is capable of tunneling jumps. The value of the tunneling rate
constant,k(T), can be considered as a sum of the two component
parts weighted in the fractions of particles. One of them is the
rate constant of the particles of the energies from zero toEH,
while the other is that of the particles of the energies fromEH

to infinity. As the particles of the energies higher thanEH do
not bring any contribution to the tunneling rate constant

f(E) ) 2

xπ
â3/2xE exp(-âE) (A1)

â ) 1
RT

(A2)

â ) 3
2CpT

(A3)

∫0

∞
f(E)dE ) 2

xπ
â3/2∫0

∞ xE exp(-âE)dE ) 1 (A4)

fEH
) 2

xπ
(âEH)3/2 exp(-âEH) (A5)

f0,EH
) ∫0

EH f(E)dE ) erf(xâEH) -

2

xπ
xâEH exp(-âEH) (A6)

Ethermal) ∫0

∞
Ef(E)dE ) 2

xπ
â3/2∫0

∞
E3/2 exp(-âE)dE )

3
2

â-1 (A7)

E0,EH
) ∫0

EH Ef(E)dE ) 3
2

â-1[erf(xâEH) -

2

xπ
xâEH(1 + 2

3
âEH) exp(-âEH)] (A8)
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(square roots from the negative values do not have the real
values), therefore finally

wheref0,EH andE0,EH are given by eqs A6 and A8.
Equation A9 gives more accurate values of the rate constant

more precisely than eq 5 because in the former, the Maxwell’s
distribution of the thermal energy has been taken into account.
This rate tunneling constant exists over the entire temperature
regime, but the low values off0,EH (very low number of the
molecules able to tunnel at high temperatures) imply thatk(T)

≈ 0 at high temperatures. At low temperatures,E0,EH < EH and
f0,EH ≈ 1.

It seems that in the range from 0 K to the temperature at
which EH/CpT) ≈ 1.5, eq A9 can be simplified to the form

Above theTtun temperature (Ttun = EH/Cp), the contribution to
the spin-lattice relaxation coming from the tunneling stochastic
jumps is very small and seems to be negligible.

The theoretical temperature dependence ofT1 (59.63 MHz)
for BAC-h6 is given in Figure 8 by the solid line. This fit of
the experimental data7 has been performed on the basis of the
same equations as those presented in our previous paper.6 The

only difference is the applied expression for the tunneling rate
constant. Equation A9 is used presently, while before, the
Skinner and Trommsdorff expression10 in the restricted tem-
perature range from 0 K to theTtun temperature was applied. It
is visible in Figure 8 that theT1 dependence is continuous and
smooth in the entire temperature regime, while before, the sharp
change appeared at the temperatureTtun (see Figure 3 in the ref
6)
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Figure 6. The temperature dependence of the fraction of molecules
of the energyEH ) 4.1 kJ/mol (eq A5) (#1) and the energy from the
range of 0 to 4.1 kJ/mol (eq A6) (#2). TheTtun temperature whereCpTtun

) EH is indicated. The values of the molar heat capacityCp have been
taken from ref 26.

Figure 7. The temperature dependences of the thermal energy,CpT,
for the BAC-h6 sample (eq A7) (#1) and theE0,EH energy (eq A8) (#2).
The activation energyEH ) 4.1 kJ/mol and theTtun temperature (1000/
Ttun ) 12.7 K-1) are indicated.

k(T) ) f0,EH
k0

(T)e-BxEH-E0,EH (A9)

k(T) ) k0
(T)e-BxEH (A10)

Figure 8. Temperature dependence of the protonT1 time (59.63 MHz)
for a powdered sample of BAC-h6.7 The solid line represents the best
fit of theoretical eqs 11 and 19 from ref 6 with eq A9 from the present
paper. The fitting parameters areEH ) 4.1 kJ/mol,∆ ) 0.65 kJ/mol,
k0

(T) ) 1 × 109 s,k0
(H) ) 8 × 1011 s. The temperature dependence ofCp

was taken from ref 26.
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