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Tunneling Molecular Dynamics in the Light of the Corpuscular-Wave Dualism Theory

L. Latanowicz*'T and P. Filipek*

Institute of Biotechnology and Eimonmental Sciences, Umérsity of Zielona Gora, Szafrana 1, 65-516 Zielona
Gora, Poland, and H. Niewodniczski Institute of Nuclear Physics of Polish Academy of Sciences,
Radzikowskiego 152, Krako31-342, Polangl

Receied: March 7, 2007; In Final Form: May 31, 2007

This paper presents the experimental demonstration of the corpuscular-wave dualism theory. The correlation
between the de Broglie wavelength related to the thermal motion and the potential barrier width and height
is reported. The stochastic jumps of light atoms (hydrogen, deuterium) between two equilibrium sites A and
B (identical geometry) occur via different pathways; one pathway is over the barrier (classical dynamics),
and the other one is through the barrier (tunneling). On the over-the-barrier pathway, there are no obstacles
for the de Broglie waves, and this pathway exists from high to low temperatures QKtbecause the
thermal energy is subjected to the Maxwell distribution and a certain number of particles owns enough energy
for the hopping over the barrier. On the tunneling pathway, the particles pass through the barrier, or they are
reflected from the barrier. Only particles with the energy lower than barrier heights are able to perform a
tunneling hopping. The de Broglie waves related to these energies are longer than the barrier width. The
Schrainger equation is applied to calculate the rate constant of tunneling dynamics. The Maxwell distribution
of the thermal energy has been taken into account to calculate the tunneling rate constant. The equations for
the total spectral density of complex motion derived earlier by us together with the expression for the tunneling
rate constant, derived in the present paper, are used in analysis of the temperature dependence of deuteron
spin—lattice relaxation of the ammonium ion in the deuterated analogue of ammonium hexachloroplumbate
((ND4)2PbCE). It has been established that the equa@ghu, = E4 (thermal energy equals activation energy),
whereC, is the molar heat capacity (temperature-dependent, known from literature), determines directly the
low temperaturdy,, at which the de Broglie wavelengthyesrogic related to the thermal energg,T, is equal

to the potential barrier width,. Above Ty, the dqesrogic Wavelength related to th€,T energy is shorter than

the potential barrier width and not able to overcome the barrier. The activation dagegyuals 7.5 kd/mol,

and therefore, th@y,, temperature for deuterons in (MRPbCE is 55.7 K. The agreement between the
potential barrier width following from the simple geometrical calculations=<0.722 A) and de Broglie
wavelength aff, (L = 0.752 A) is good. The temperature plots of the deuteron correlation times fa)£ND

PbCk reveal comparable values of the correlation times of the tunnelifig), @nd over-the-barrier jumps

(z™) near 34.8 K. Matsuo, on the basis of the molar heat capacity study, found the first-order phase transition
at this temperature.

Introduction the energy of the particle is lower than the potential barrier
height. The kinetic energy of the particle in molecular systems
is the thermal energy. The thermal energy causes the stochastic
(thermally activated) reorientations of molecules and molecular
groups and de Broglie waves related to these motions. As

Corpuscular-wave dualism is revealed when the length of the
electromagnetic or de Broglie wave comes up to a size
comparable to that of the object. Experimental evidence of this
phenomenon comes from the diffraction of “gh.t' . X-rays, follows from the Schidinger equation, the de Broglie waves
electrons, or neutrons as well as the photoelectricity. Well- - . . .
recognized de Broglie waves are those accompanying the motionrelated to the par'qcles in the space of the potential barrier pass
of electrons in the electric field (Davisson and Germer experi- through the barrier, or they are reflected from-the barrier.
ment). The phenomena of diffraction and interference occur at However, on the classical pathway (over the barrier), there are

the de Broglie wavelength comparable with the distances N obstacles for the de Broglie waves.

between the atomic planes in the crystal. Study of stochastic molecular motions in solids is an
The tunneling dynamics seems to be also a proof of the important application of the nuclear magnetic relaxation method.
corpuscular-wave dualism. As follows from the Satirmer Usually, interpretation of the experimentally determined tem-

equation, the possibility of tunneling dynamics appears when perature dependence of spilattice relaxation time permits
identification of molecular motions and determination of the
t University of Zielona Gora. relevant motion parameters, including activation energies and
*H. Niewodniczaski Institute of Nuclear Physics of Polish Academy  rate constants (correlation times). Recently, theoretical equations
of Sciences. o - for the spectral density of a methyl group motion have been
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L over the barrier. The probability of thermally activated hopping
En . over the potential barrier (rate constakit)) is proportional to
. g, | B Yo=BurEo the barrier height (Arrhenius law); therefore
0 v v o
L v
A 5 K" = K exp(- E/RT) (1)

Figure 1. Scheme of the tunneling pathway from the A to B site

through a potential barriet; andU, are the barrier width and height, WherekéH) is the preexponential factoEy = V4 — Eyo is the

E.o andE,; are energy levels of the vibrational states vO and v1, and molar activation energyyVy and E, are the potential barrier
E is the activation energy. height and the energy of the ground-state vibrational level for
the Avogadro number of particles.

The hopping over the barrier takes place over the entire
ermodynamic temperature regimg, because the thermal

over a potential barrier (Arrhenius pathway, classical motion)
and tunneling jumps through the potential barrier (tunneling th

pathway, q”""”‘“f” mechgnlcal type of mo’uon). Tunneling jumps energy is subjected to the Maxwell distribution, and a certain

through the barrier and jumps over _the b_arrler cause transportnumber of particles owiE, energy and are able to perform a

ofa mass between t.*?‘? same equilibrium sites, but they are base‘?lmpping over the barrier. Zero Kelvin is the final temperature

on different probabilities of occurrence (rate cons.tant_s). for the probability of classical motion. Moreover, on the
The purpose of the paper is to present the application of the , -~ pathway, there are no obstacles for the de Broglie

tunneling rate constant (probability of tunneling, coefficient of Waves ’

the transparency of the potential barrier) according to the Accérding to quantum mechanics, there is a possibility of

Schralinger equation to analyze the spilattice relaxation in : . . . -
. ; AR passing through a potential barrier by the particles whose kinetic
a wide temperature regime. The Maxwell distribution of thermal . . . .
. ; . . energy is lower than the barrier height. The solution of the
energy will be taken into account in our calculations of the et . . .
4 . Schrainger equation for the problem of the tunneling motion
tunneling rate constant. Recently, the tunneling rate constant - - . L .
of particles through the potential barrier explicitly gives the rate

according to Sctiinger has been proposed in a number of constant of tunneling jumps (probability of tunneling, coefficient
our papers; but the problem of the Maxwell distribution of gJumps (p 5 Y 9
of transparency of the barriet)? that is

thermal energy has not been considered. We show, on a
previously analyzed examfSlef BAC-h6 data’ how taking into B P
account the Maxwell distribution changes the theoretical tem- KD = kg)e (B, 2mUo~8)
perature dependences of the ) M )
Our approach to the tunneling and classical dynamics differs Where m is mass of the particlek” is the preexponential

from that known from literature. We treat the tunneling and factor,Up andL are the height and width of the potential barrier
classical hopping as a complex stochastic motion, while these (Figure 1), anck is the energy of the particle.

are treated in the literature as a uniform motion, described by Equation 2 indicates that the probability of tunneling is greater

)

a single rate constant. Usually the Mu-Warmuth approac than zero only when the kinetic energy of the partide,is
is applied to study the molecular dynamics of methyl-bearing lower than the height of the potential barriéfy. Therefore,
solids, and the Skinner and Trommsdorff appré@dh for the tunneling jumps begin at a temperature at which the kinetic

hydrogen-bonded tautomers. The single rate constant, propose@nergy of the particle becomes equal to that of the potential
in both approaches, is not convincing, which was discussed in barrier height, £ = Uo). The probability of tunneling increases
our paperg-611 whenE — 0. The particles are also reflected from the barrier

The Schidinger equation applied by us solves several (coefficient of the reflection from the barrier, probability of the
problems. (1) The same expressions for the tunneling rate reflection). Thus, on the tunneling pathway, the potential barrier
constant can be used for tunne“ng hopp|ng of the proton/ is an obstacle for the de BI’Oine waves related to thermal
deuteron in proton transfer and in methyl group hindered €nergies of the particles. However, the energy higher than the
rotation. (2) We are able to explain why the tunneling is pptential barrier height allows hopping over the barrier (Arrhe-
detectable only at low temperatures up to a certain temperatureNius law).

(3) It can be shown that the tunneling dynamics of particular ~ The energy

atoms begins when the de Broglie wavelength related to the
kinetic energy of these atoms (thermal motion) is comparable
with the potential barrier width. (4) The over-the-barrier motion
can exist upd 0 K because there is no obstacle for the de
Broglie waves.

The slower slope on the low-temperature side of the minimum
of the In(T;) versus (1000V) dependence has been observed in
a deuterated analogue of ammonium hexachloroplumbate,
(NDy)2PbCk.12 Filipek et all? indicated the tunneling dynamics
as an effective mechanism of relaxation below 50 K but did Ny Uo=E4 + Ey 4)
not analyze this mechanism. In the present paper, thé?data
are analyzed in terms of the S¢Hioger equation and in the  Thus, eq 2 can be rewritten as

light of the corpuscular-wave dualism.
k(T) — k(()T)e*B JE—CpT (5)

N E=C T+ Ep ®3)

characterizes the energy of the Avogadro number of particles
at the ground-state vibrational level. TRgT, whereC, is the
molar heat capacity anflis temperature in the Kelvin scale, is
the thermal energy of the Avogadro number of particles.

The potential barrier height of the Avogadro number of
particles equals

Reorientation Model

According to the classical mechanics, to overcome a potential Where
barrier, the particles must have a kinetic energy (thermal energy)
greater than the height of the barrier (Figure 1). The thermal B= 2L [2m (6)
energy higher than the potential barrier height allows hopping A A/ Ny,
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L and
P
3E, 2 3E, [ Ey4
e o8 = 5T er{VfJ)_ﬁ et
ST ) 10
Sisaasaan TR 2c T (10)
ao S ao Equation 8 has improved the values of the tunneling rate
R constant expressed by eq 5 in the temperature regime where
DD 1 < (En/CpT) < 1.5 As also follows from eq 8, due to
Maxwell’s distribution, the tunneling rate constant exists in the
Roo Rop whole temperature regime but because of the low values of

..... . fog,, the tunneling hopping can be negligible abdvg.
The Schrdinger description of the probability of the tunneling
jumps is very useful to study the tunneling dynamics of protons

L ao L and deuterons in the methyl groti, as well as in the hydrogen
bond#-6

The stochastic molecular motions in the ground and first
Figure 2. Three deuterons at the distancesRyb = 1.78 A are excited vibrational states vO and v1 do not have the same rates.
separated by the barriers of the widths= Rop — 2a0 = 0.722 A;a Therefore, the rate constarké) and k™ for the separate vO
= 0.529 A's the radius of the first orbit of Bohr. and v1 states have to be defined separately. Assuming that eqs
1 and 5 (or 8) define thek{"),o and &™)y, the respective rate
constant for v1 can be defined as

The value oBB in eq 6 depends on the mass,of the tunneling
particle and on the width of the potential baryidr. The
tunneling jumps are expected for the light atoms, H and D,

Hy — o (H
hopping in hydrogen bonds and methyl groups. The mass of (K"); = k™ expl=(Ey, — Epp)/RT] (11)
the tunneling deuteron is = 3.346 1027 kg. . .

As follows from the structural data of the deuterated analogue KDy, = KK, (12)

of ammonium hexachloroplumbate, (WEPbCE, three deuter-
ons of the N group are at the tetrahedron apexes, while the wherek’ > 1. The value ok’ > 1 indicates a greater rate of
fourth one is along the ND bond which is the symmetry axis  tunneling in the first excited vibrational state than in the ground
of this molecular group. In such a structure, deuterons undergostate. A valuek' of about 30 has been established for the rate
hindered rotationCs, analogous to that of hydrogen atoms ina (z(M),; of the proton transfer in the hydrogen bokd!®

methyl group. The fourth deuteron is invisible for this rotation.

The distances between deuterons Bgg = 1.78 A. Taking Spin—Lattice Relaxation of Deuterons in a Methyl Group

into regard the atomic size (the radius of the first Bohr oabit
=0.529 A), it is possible to calculate the potential barrier width
L, which seems to be simply= Rop — 2a, = 0.722 A (Figure

The spin-lattice relaxation of a nuclear spin with a quadru-
pole moment is caused by a stochastic modulation of the electric
field gradient at the site of the nucleus caused by molecular

2), and then, the value & is 0.144 (/J)~% . motion. The largest tensor components of the deuterons are
Equation 5 determines the temperatdiig, at which the  normally aligned to the XD distance vector (chemical bond
probability of tunneling becomes nonzero and stays nonzero ¢ deuterium). Since the populations of molecules at the
for temperatures lower thafu,, where vibrational levels obey the Boltzmann distribution (the vibra-

tional relaxation is much faster thdn relaxation), the deuteron
T = E @) relaxation rate is given by
tun Cp
1 1 1
Despite the thermal enerdy, T reaching the value dEy at (Ty) n"O(Tl)\,o * n"l(Tl)\,l (13)

increasing temperature, the thermal energies of some fraction

of the molecules are lower thédg. Therefore, more detailed  wheren,o andny; are the Boltzmann fractions of molecules in
consideration of the tunneling rate constant requires taking into the separate vibrational levels vO and v1 associated with the
account the Maxwell's distribution of thermal energies (the average energieB,o and E,; of the ground and first excited
expression for the tunneling rate constant which includes the vibrational levels.

Maxwell distribution of thermal energy is calculated in the The fractionn,o of the molecules undergoes motion at the

Appendix of the present paper) tunneling rate constants d€'()),o and &™),o, while the fraction
ny1 undergoes motion at the tunneling rate constant&(dh)(;
KD = fOYEHkéT)efBA /Ev—Eogn (8) and kM),;. Because the population of molecules in the second

excited vibrational level is very low, it seems reasonable to take
into account only two vibrational levels\p + n,; = 1 and
nvi/nvo = exp(—Ep/RT)). Therefore, the values af,o andny;

are

wherefy g, andEyg,, are the fraction and the energy of particles
with energies from 0 t&y (only they are capable of tunneling)

oo 3E,
os, = ®\A 2C T

(14)

_2 3B 3B expEy,/RT)
1] 1 © No= o7
e P P expEy/RT) +1
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1 1 1 1

" expEy R + 1 ) @ @ G -

The tunnel splittinghwy* of each wth vibrational level is and
imposed by the symmetry of the methyl group. The spin energy
levels in a magnetic field for a purely threefold potential barrier f(w + @y, 7) = T + 4z

. . i T

of a CD; rotator and for the two lowest vibrational states were 1+ (v, wT)ZTZ 1+ (2w, + wT)ZTZ
calculated by Haupt In the limit of vibrational energie&,x (22)
< Ug, where w = v0, v1, ..., the vibrational states are
degenerated into the states of symmetry 4,dhd B. The A Here,®3; = 109.4 for the symmetry axis of the electric field
sublevels are split into quartets, while the E levels are split into gradient (tetrahedral angle of-iL—D in the methyl group).

doublets. The splittindiwy* of the vibrational states of the The correlation time for jumps over the potential barrier
methyl group superimposes the Zeeman splitting of spin levels (Arrhenius equation) equals

wi In a magnetic field. TheC; hindered rotation (jumps over 1

the barrier as well as tunneling jumps through the barrier) of (T(H))Vx = m (23)
methyl deuterons in a triple potential induces the transitions 3(k( ))vx

between the spin states. The deuteron spittice relaxation _
of an isolated CB group is determined only by A~ E where k"), and k").1 are given by egs 1 and 11.
transitions. The symmetry conserving transitions<E Ey (i The correlation time for tunneling jumps through the potential
and 2w) are forbidden by the spin selection rules. Therefore, barrier equals

Haupt® has proposed to replace the angular NMR frequencies

wi and 2w; in the well-known BPP formufd with w; + o M), = =
and 2v; + oY, respectively. The numerical factor in the Haupt 3K

equation has to be assumed to be twice as small as that in BPP 5 o .

because whemy = 0, both theoretical expressions should where k™) and 7)., are given by eqs 8 and 12.
give identical results. Therefore

1

(24)

Application of Theory to Experimental Data

1\ 9%, x 1w 2 The deuterorT; was measured at 46 MHz as a function of
(ﬂ)vx = qel) (@it o)+ o —or) + 2o+ inverse temperature for a powdered sample of {MPbCh.12
VX 2 W Two tunneling frequencieso¥°, 21 x 0.35and Z x 1 MHz

) +JRw; — or)] (16) below the orderdisorder phase transition temperature, have
where been found from the deuteron NMR spectra of @¥PbCk

and attributed to ions in the ordered domdihssuch small

values of tunnel splitting c(¥° < ;) have an insignificant
effect on theT; (46 MHz) values:2 Therefore, both eq 16 with
% ~ 0 or the well-known BPP equatidhcan be used in the
analysis of the deuterom, data for (ND;),PbCk.

Experimental values are presented in Figure 3 together with
the theoretical fit of eqs 13 and 20 with eq 1 and 8 to the data.

Iy — The fitting parameters, 757, 7, andEy are listed in Table
F(t) = qeesin 9(t) cosi(t) explig (V)] (18) 1. The value of the quadrupole coupling constgatis well
estimated from the fitting procedure ©f because this parameter
determines the value df at the minimum of the temperature
dependence. The temperature dependence of the molar heat
capacity Cp, which is necessary for this fit, has been taken from
ref 19.

The activation energl¢y obtained from the slope of the high-
temperature side of th& minimum equals 7.5 kJ/mol. This
Iyalue ofEx and the temperature dependence of thermal energy
C,T indicate the temperaturBy, as that at which the value of
the thermal energy equals the activation ene@yl{n = En).

The Twn temperature is 55.7 K (10004, = 17.95 K1).

The experimental and theoretical temperature dependencies
of the correlation times are presented in Figure 4. The correlation
time @M),o (eq 24) is almost a constant value from the low

M) = [ FOF™(t+ 1)lexpCior)dr  (17)

wherem = 1, 2 are the spectral densities of the correlation
functions of the fluctuating part of the interaction Hamiltonian.
These random functions are

F2(t) = qeSimo(t) expli2e(t)] (19)

The gec = <€%0,,Q/h> is the quadrupole coupling constant
expressed in hertz. The polar and azimuth angieand ¢
describe the orientation of the electric field gradiept, at the
site of the quadrupolar nuclei.

The spectral densities depend on the model of motion. The
respective spectral densities, obtained as a result of the Fourie
transform of the correlation functions for the model of complex
motion ofqg; in a triple potential, consisting of jumps over the
barrier and incoherent tunneling, have been derived in refs 1
and 18. Inserting the corresponding spectral denslfigs) (eq
56 in ref 1) into eq 16, one gets

1 372 temperatures up to thB,, temperature. Then, with increasing
(?) = 2—0qcczsin2®3{ COS',7®3(f[(a)i + w¥x),(r(T))vx] + temperatures, a significant increase in the tunneling correlation
wx time values takes place. The characteridiig, temperature
fl(w; — 0¥, ™), ] + fl(0, + 0¥),@™),.] + appears in the temperature regime wher@)(o > (7).

v 7 (H . v Therefore, despite the tunneling hopping existence over the
fl(e; = 07),")) + siPO(fl(w; + 7). (m),] + entire temperature regime, the low probability of this motion
fl(w; — 0¥),(@),)} (20) at high temperatures (very long tunneling correlation time,
(z™M)y0) makes it undetectable. Similarly, the correlation time
where (z™)yo characterizing jumps over the barrier (eq 23) follows
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Figure 3. Temperature dependence of the deuteron -sfaittice
relaxation time for (NQ).PbCk at 46 MHz. The best fit of the
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Figure 5. The temperature dependence of the de Broglie wavelength
related to the average thermal ene@yf/Na, (#1) and the particular
thermal energ¥n = (7.5Nay) kJ (#2) of the deuteron in (NI.PbCk

(#1). Curve #3 represent thigesogicrelated to the thermal energy (1.5

experimental data (circles) to egs 13 and 20 with eqs 1 and 8 is given k;T) of the deuteron in the ideal gas. The arrow shows the characteristic

by the solid line. The arrows show the characteristic temperaifures
and the phase transition temperature (P. T).
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Figure 4. Deuteron correlation timeg™ (circles) andr™ (triangles)

of (ND4),PbCk as a function of 10007 (K~%). The points and lines
refer to the experimental and theoretical correlation times, respectively.
The arrows show the characteristic temperatdigsand the phase
transition temperature (P. T).

TABLE 1. The Motional Parameters Obtained from the Fit
of the Deuteron T, Data to Eqs 13 and 20 with Eqs 1 and 8

Qe T =1Eg") M=13) Ex  Tun
(kHz)  (107%4s) (10%s)  (kdJ/mol) (K)
(ND4)PbCE 145 4 3 7.5 55.7

the Arrhenius dependence in the entire temperature regime, bu&

in low temperatures. this time is so long (much longer than-
(z™M),0) that this motion does not contribute to therelaxation.

temperatureJyn.

de Broglie Wave Related to the Thermal Motion of
Particles

It has been well-established that the corpuscular-wave dualism
is revealed when the lengths of the electromagnetic or de Broglie
waves are comparable to or longer than the size of the object
onto which the wave is incident.

The de Broglie wavelength is described by the formula

h
A i = ——
deBroglie m Ekin

whereh = 6.63 x 10734 Js is the Planck’s constant, amdl
and Ey, are the mass and kinetic energy of a particle.

In the ideal gas, the kinetic energy (thermal energy) of a
particle is described by the equation

(25)

3
Euin = EkBT (26)
wherekg =1.38 x 1023 J’K~1 s the Boltzmann constant, and
T is temperature on the Kelvin scale.
The kinetic energy of a particle in any material equals

kin NAV
whereC, is the molar heat capacity, atdk, = 6.02 x 10?3 is
he Avogadro number.

As follows from eqs 2527, the de Broglie wavelength,

AdeBroglie r€lated to the thermal motion increases with decreasing

The less accurate fit of the data in the temperature regime temperature. The line #1 in Figure 5 presents the temperature

near 10007 ~ 30 K~! can indicate one more mechanism of
relaxation. This mechanism could be due to tunnel splitting. In

dependence Ofgerrogicrelated to the thermal energ@,T, of a
deuteron in the molecule studied, (WEPbCE. This dependence

this mechanism, the time-dependent fluctuations of the interac-was calculated on the basis of eqs 25 and 27 and the molar

tion Hamiltonian do not concern the mass transport between
equilibrium sites but the lifetime broadening of spin levels.

In Figures 3 and 4, one sees fhigand ¢(M),, peaks on the
theoretical dependences corresponding to the molar heat capaci
C, peak at 34.8 K (temperature of the first-order transitfpn

heat capacityCp, which is temperature-dependéfitThe de
Broglie wavelength corresponding to the particular endggy

= 7.5 kd/mol in the Maxwell distribution of thermal energy
equals 0.752 A (#2). The line #1 intersects the line #2 at the

ti'empera'[ureTmn, where C,Twun = En, revealing that the de

Broglie wavelength related to the thermal enei@yT, reaches

There is an interesting feature of the correlation times revealedhe yajue of 0.752 A at thw, temperature. This value is close
in the plots in Figure 4, namely, that the phase transition takes g the value of the barrier width = 0.722 A following from
place near the temperature at which the experimental correlationthe geometrical calculations (Figure 2). Thus, the temperature

times 7" andz$” have comparable values.

Twn is the point at which the de Broglie wavelength of the
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thermal motion becomes comparable to the potential barrier
width. BelowTyn, theAgesrogierelated to theS, T energy is longer
than the potential barrier width,, and can pass through the
barrier. The longer the wavelength, the higher the probability
of tunneling and lower the probability of reflection from the
barrier. AboveTuwn, the Aderrogie related to theC,T energy is
reflected from the potential barrier.

The line # 3 inFigure 5 was calculated on the basis of egs
25 and 26. As follow from this figure, the de Broglie
wavelength, related to the thermal energy, in the ideal gas (#3)

Latanowicz and Filipek

calculated directly from the exponential protdntemperature
dependence, is proposed by &b et al2® In this case, the
temperature dependence of the correlation time yields the
apparent activation energy

B a(ln(llkTOTAL)
(R

The activation energies thus obtained are well below the barrier
heights for all compounds studied. This phenomenon according

(32)

act

is longer than that in the real substance (#1) at the sameto the authors is the proof of the predominance of tunneling

temperature.

Other Models of the Tunneling Rate Constant and Total
Spectral Density

Our calculations of eq 20 are based on the Woe3$%aad
Wallach! methods of calculation of the total spectral density
for complex motion. Woessrm@rproved that it is not the total
correlation time but the total spectral density of a complex
motion consisting of a number of independent motions simul-
taneously modulating the dipolar Hamiltonian, which has to be
calculated. The classical and tunneling rate constants in our
approach are based on the Arrhenius (eq 1) and "Seiger
(eq 8) equations. These are two different probabilities of jumps;

therefore, the temperature dependencies of spectral densities of

both types of motion are different.

In contrast to our calculations, the total rate constaifTAL,
representing the tunneling and over-the-barrier hopping, is
usually approximated by a biexponential dependence whose firs
term is the Arrhenius-like dependence, and the second describe
the deviations from the Arrhenius law. Such an approximation

of the spectral density is based on the assumption that at
intermediate temperatures, the classical dynamics evolves

smoothly into the quantum low-temperature dynamics and that
the particle is transferred from the A to B equilibrium site by
a single, uniform motional process.

Miuller-Warmutt#? introduced the following phenomenologi-

cal expression for the temperature dependence of total rate

constants
KTO™D = K& exp(-E,/RT) + ki) exp(—Eq//RT) (28)

wherek{" is the preexponential factor arth; = Ey; — Eyo is
the energy difference between the vibrational states v1 and vO.
In the high-temperature limit, the total rate const&fOTAL),
invariably corresponds to the classical limit, and at low
temperatures, it is governed by the tunneling.

The approximation ok(TOTAL presented by Limbach et &.
assumes also a two-exponential dependence of this value

k(TOTAL) — ks_\T BOTAL) + ki(BT,b?TAL) (29)
where
kag' " = Koy €XPE/RT) + ko, eXp-E/RT)  (30)
and
aa D= Kig K g (31)

whereE; andE; are the average activation energies for the high-
and low-temperature motional process€ss is the equilibrium
constant, andko; andko, are the preexponential factors.

The singlek(TOTAL assumed as a weighted average of the
finite time constant, which is evaluated numerically and

hopping even at high temperatures.

With a view to formulating the smooth transition from
tunneling to classical motion, it is assumed by Skinner and
Trommsdorffl® Heuer and HaeberletiMeyer and Ernst3 and
also Horsewill et at*15-25that

KTOTAD = K 4 n (kP o+ 0y (D), (33)
wherek®™) is given by eq 1. The description of the tunneling
rate constant,k("),, which requires the presence of unequal
energy at equilibrium sites A and B, has been given by Skinner
and Trommsdorff

_ kg)exp@/RT) +1
exp(A/RT) — 1

where A is the energy difference between potential energy
minima at equilibrium sites;k{M)y1 = K (kM)vo, wherek' > 1.

he value ok’ > 1 indicates a faster rate of tunneling hopping
in the first excited vibrational state than in the ground state.

All of the above-presented phenomenological approximations
of the total rate constant used in the splattice relaxation
expressions fit very well with the experimental data because
the kTOTAL) is the best-fit parameter in these approaches. The
problems appear only when the same best-fit parameters have
to be used for th&; temperature dependences at high and low
resonance frequencies. It is impossible to obtain an acceptable
fit to both the protonT; (w = 27 x 55. 2 MHz,w, = 27 X
24.7 MHz) andTy, (B1 = 9 G), obtained for 2,5 DNBA data,
by employing eq 33, which is discussed in Figure 5 of ref 5.

In our opinion, the classical and tunneling hopping cannot
be treated as a uniform motion described by a single rate
constant. Neither the Skinner and Trommsdorff equation nor
the Schidinger equation imply that the particle is transferred
from the A to B equilibrium site by a single motional process;
therefore, the spectral density for a single motion cannot be
correct in describing the wide temperatures dynamics of light
atoms asH and?H. That the approach of the spectral density
due to classical and tunneling hopping by the total rate constant,
KTOTAL 'seems to be incorrect has been shown in our papers
(ref 6, Figure 6 and ref 1, Figure 9).

KD (34)

Summary

The stochastic jumps of light atoms (hydrogen, deuterium)
between sites A and B occur by jumps over the barrier
(Arrhenius) and by tunneling jumps (Scldinger). These two
stochastic motions, although geometrically identical (transfer
of mass from A to B equilibrium sites), are described by two
different probabilities and occur via different pathways; one
pathway is over the barrier, and the other one is through the
barrier.

The two sites A and B can be imagined as two cities separated
by a mountain. The way across the mountain leads over the
top of the mountain. This way can always be used (0 K is the
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end of the classical motion), but enough power (thermal energy)
has to be available to take this pathway. A decrease in

J. Phys. Chem. A, Vol. 111, No. 32, 2007701

[ HE)E = %53’2 [ VEexp(-PE)E=1 (Ad)

temperature causes a decrease in thermal energy, but the thermal

energy is subjected to the Maxwell distribution, and a certain
number of particles own enough energy for hopping over the
barrier. Another way goes through the tunnel under the

mountains, but this way can be used when the gate to the tunnel

is opened. The “key which opens the gate to the tunnel pathway”
is the de Broglie wave, which is long enough to pass the barrier
width. The nature is very gracious for moving atoms, predicts
when they do not have enough power to go over the barrier,
and opens the gate to the tunnel pathway.

The de Broglie wavelength related to t8gT energy is equal
to the barrier width at the temperatuiie,, where the thermal
energy of a particle equals the activation enei@QyT{u, = En).
Below T, temperature, the de Broglie wavelength, related to
the CpT energy, is longer than the barrier width. This condition
is a solution of the Schrbinger's equation and is called the
“transparency of barrier”. Due to Maxwell’s distribution of the

The fraction of molecules with a the particular eneEgyequals

fe, = =B Xp(HE (A5)

N

The activation energ¥y = 4.1 kJ/mol has been determined
for BAC-h6 protons” The temperature dependence fef
calculated from eq A5 is interesting (Figure 6). The fraction of
particles with the energiy equals zero at low temperatures.
This temperature dependence goes through a maximum at the
temperature 10004, = 12.7 K™1. At this temperatureTuyn,
the thermal energg,T equalsEy.

The fraction of atoms with energies from OEp (only they
are capable of tunneling) at a given temperature represents the
part of the integral given in eq A4, that is

thermal energy, the kinetic energies of some particles are lowerf, £, = OE“ f(E)dE = erf( /ﬂEH —

than the barrier height even at high temperatures, but above

Twn the fraction of molecules with energies lower than is
very small. On the tunnel pathway (in the space of the potential
barrier), the de Broglie waves related to the thermal motion of
particles are also reflected from the barrier (probability of the
reflection from the barrier). On the Arrhenius pathway, there
are no obstacles for the de Broglie waves. The tunneling motion
confirms the corpuscular-wave dualism theory.

Appendix

Equation 5, expressing the tunneling correlation time accord-
ing to the Schidinger equation, has been proposed in a number
of our papers:> Despite the fact that the thermal enegyermal
= C,T reaches the value d&y with increasing temperature,

some fraction of the molecules takes thermal energy lower than

En. Therefore, more detailed consideration of the tunneling rate
constant requires one to take into account the Maxwell's
distribution of the thermal energy. In this appendix, we derive
the expression for the tunneling rate constant which includes
the Maxwell distribution of thermal energy. We also show, on
the previously analyzed example (59.63 MHz) BAC-h6 daté,
how the allowing of the Maxwell distribution changes the

ZPE. ex(-fE) (A6

Thefog, = 1 at low temperatures and decreases to 0 at high
temperatures. This means that all particular energies in the
Maxwell distribution of the thermal energy are lower thian

at low temperatures, and thereforlg, = 1. At higher
temperatures, part of the molecules take kinetic energies higher
thanEy, and therefore, the fraction of energies in the range of
0 to Ey decreases (Figure 6).

The molar average kinetic energy (thermal ener@fsrma
equals (3/2RTfor the ideal gas an@,T for the real substance.
The thermal energy of the Avogadro number of particles equals
the field under theef(E) function, that is

Evema= fo EXE)IE = %Tﬁ” [ E* exp(-fE)dE =
25*1 (A7)

wheref is given by eq A2 or A3.
The thermal energy of the particles in the limit of 0Eg

theoretical values of the tunneling rate constant and inﬂuencesenergy can be calculated from the equation

the T1 temperature fit.

The distribution of kinetic energies, of the Avogadro
number of atoms or molecules is governed by the Maxwell
distribution

f(E) = %Tﬁ”@ exp(—pE) (A1)
where
1
B = BT (A2)

for the particles in the ideal gas, wheRe= 8.314 J/K/mol is
the gas constant, or

3
=== A3
b 2C,T (A3)
for the particles in the real substance.
The area under the Maxwell distribution in the limits of zero
to infinity remains the same, giving a value of one

Eor, = [ EE)E = gﬁ‘l[erf(JﬁE -
2
N

The increasing temperature of the sample BAC-h6 causes an
increase in the thermal energy valu€gl, as shown in Figure
7. TheCpT = Ey at the temperature 10004, = 12.7 K. The
temperature dependence of the enekgy, is different than
this C,T. Eo g, goes through a maximum at the temperailiig
(Figure 7)

As follows from the Schidinger equation, only the fraction
of the molecules of the kinetic energy in the range of Eto
is capable of tunneling jumps. The value of the tunneling rate
constantk(™, can be considered as a sum of the two component
parts weighted in the fractions of particles. One of them is the
rate constant of the particles of the energies from zergto
while the other is that of the particles of the energies fi&m
to infinity. As the particles of the energies higher than do
not bring any contribution to the tunneling rate constant

pE1+ E exp(—ﬁEH)] (A8)
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Figure 6. The temperature dependence of the fraction of molecules Figure 8. Temperature dependence of the profetime (59.63 MHz)

of the energyEn = 4.1 kJ/mol (eq A5) (#1) and the energy from the
range of 0 to 4.1 kd/mol (eq A6) (#2). The,, temperature wher€;Twn

= Eu is indicated. The values of the molar heat capaCyave been
taken from ref 26.
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(square roots from the negative values do not have the real

values), therefore finally
k(T) =f %T)e*BA/EH*Eo,EH
0E,

wherefyg, andEgg, are given by eqs A6 and A8.

(A9)

Equation A9 gives more accurate values of the rate constant

for a powdered sample of BAC-H6The solid line represents the best
fit of theoretical eqs 11 and 19 from ref 6 with eq A9 from the present
paper. The fitting parameters dig = 4.1 kJ/mol,A = 0.65 kJ/mol,

KD =1 x 10° 5,k = 8 x 10! s. The temperature dependenceépf
was taken from ref 26.

only difference is the applied expression for the tunneling rate
constant. Equation A9 is used presently, while before, the
Skinner and Trommsdorff expressidrin the restricted tem-
perature range fra 0 K to theTy, temperature was applied. It

is visible in Figure 8 that th@; dependence is continuous and
smooth in the entire temperature regime, while before, the sharp
change appeared at the temperafugg(see Figure 3 in the ref

6)
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